【出版著作与教材】 1.陈志华,尹越,赵秋红,周婷,组合结构,天津大学出版社,2017-10-01,ISBN: 2.韩庆华,赵秋红,芦燕,钢结构稳定性,武汉大学出版社,2014-11-01,ISBN:9787307144521 【部分发表论文】已在国内外学术刊物发表学术论文60余篇,主要包括: [1]Zhao Q*, Qiu J, Li Y, et al. Lateral behavior and PFI model of sinusoidal corrugated steel plate shear walls[J]. Journal of Constructional Steel Research, 2023, 203: 107812. WOS:000944634000001 [2]Zhao Q.*, Ma C., Huang B., Lu X., (2023) “Development of alkali activated cementitious material from sewage sludge ash: Two-part and one-part geopolymer”, Journal of Cleaner Production, Volume 384, 2023, pp.135547. WOS:000904726900001,JAN 2023. [3]Zhao Q., Wang Y., Xie M., Huang B. (2022) “Experimental study on mechanical behavior of steel fiber reinforced geopolymeric recycled aggregate concrete”, Construction and Building Materials, Volume 356, 2022, pp.129267. WOS:000898547400003, NOV 2022. [4]Zhao, Q.*, Qiu, J., Zhao, Y.,Yu, C. (2022)“Performance-Based Seismic Design of Corrugated Steel Plate Shear Walls”, KSCE Journal of Civil Engineering, 26(8), pp.3486-3503. WOS:000808434700001, AUG 2022. [5]Qiu J.,Zhao Q.*, Wang Z, Yu C. (2022) “Lateral behavior of trapezoidally corrugated wall plates in steel plate shear walls, Part 1: Elastic buckling”, Thin-Walled Structures, Volume 174, 2022, pp.109104. WOS:000792879400004, MAY 2022. [6]Qiu J.,Zhao Q.*, Yu C., Wang Z. (2022) “Lateral behavior of trapezoidally corrugated wall plates in steel plate shear walls, Part 2: Shear strength and post-peak behavior”, Thin-Walled Structures, Volume 174, 2022, pp.109103. WOS:000792879400002, MAY 2022. [7]Dong S.,Zhao Q.*, Zhu H. (2022) “Mechanical properties and constitutive model of steel fiber-reinforced rubberized concrete”, Construction and Building Materials, Volume 327, 2022, pp.126720. WOS:000764354000001, APR 11 2022. [8]Tan, Z.,Zhao, Q.*, Zhao, Y., Yu, C. (2022) “Probabilistic Seismic Assessment of CoSPSW Structures Using Fragility Functions”, Metals 2022, 12(6), pp.1045. WOS:000816406200001, JUN 2022. [9]Zhao, Q.*, Dong, S., Wang, Q. (2021) “Seismic Response of Skewed Integral Abutment Bridges under Near-Fault Ground Motions”, Including Soil–Structure Interaction. Applied Sciences, 2021, 11(7), pp. 3217. WOS: 000638334500001, APR 2021. [10]Zhao Q.*, Li Y., Tian Y., Li Z. (2020) “Cyclic behavior of corrugated double-skin composite walls with different aspect ratios”. Journal of Structural Engineering, 2020, 146(10), pp. 04020214. WOS:000561743900009, OCT 2020. [11]Zhao Q.*, Li Y., Tian Y. (2020) “Cyclic behavior of double-skin composite walls with flat and corrugated faceplates”, Engineering Structures, 2020, Volume 220, pp. 111013. WOS:000552328200005, OCT 2020. [12]Zhao, Q.*, Qiu, J., Zhao, Y. et al. (2020) “Estimating fundamental period of corrugated steel plate shear walls”, KSCE Journal of Civil Engineering, 24(10), pp. 3023-3033. WOS: 000559415100003, OCT 2020. [13]Liu J, Liu Y, Zhang C,Zhao Q,Lyu Y, Jiang L (2020) “Temperature action and effect of concrete-filled steel tubular bridges: A review”, Journal of traffic and transportation engineering-English edition, 7(2), pp. 174-191. EI Accession number: 20210909983418. [14]Qiu J.,Zhao Q.*, Yu C., Li Z. (2018) “Experimental studies on cyclic behavior of corrugated steel plate shear walls”, Journal of Structural Engineering, 2018, 144(11), pp. 04018200. WOS:000444533300001, NOV 2018. [15]Wang, Z., Li, X., Gai, W., Jiang, R., Wang, Q.,Zhao Q., Dong, J., Zhang, T (2018) “Shear response of trapezoidal profiled webs in girders with concrete-filled RHS flanges”, Engineering Structures, Volume 174, 2018, pp. 212-228. WOS:000449126700016, NOV 2018. [16]Zhao Q*., Sun J., Li Y., Li Z. (2017) “Cyclic Analyses of Corrugated Steel Plate Shear Walls”, Structural Design of Tall and Special Buildings, 26(16), SI: e1351. WOS: 000412750800005, NOV 2017. [17]Li Z., Gao Y,Zhao Q.(2016) “A 3D flexure-shear fiber element for modeling the seismic behavior of reinforced concrete columns”, Engineering Structures, June, Volume 117, pp. 372-383. WOS:000375817600027, JUN 15 2016. [18]Lian J., Zhang Y., Liu F.,Zhao Q* (2015) “Analysis of the ground vibration induced by high dam flood discharge using the cross wavelet transform method”, Journal of Renewable and Sustainable Energy, Jul, 7(4), pp. 043146. WOS:000360655500065, JUL 2015. [19]赵秋红,王晴薇,董硕,陈宝春,刘畅,任伟.整体式斜交连续梁桥抗震性能[J].交通运输工程学报,2022,22(06):232-244. EI Accession Number: [20]赵秋红,翁琴龙,黄福云,陈宝春.整体式斜交桥台-桩-土体系往复加载拟静力试验[J].中国公路学报,2022,35(11):73-85. EI Accession Number: [21]赵秋红,孙泽旺,谭志伦.SMA碟簧群的循环受压性能及简化模型[J/OL].工程力学:1-14[2022-11-30].网络首发 EI Accession Number: [22]赵秋红,郭浩猛,董硕,王晴薇,陈宝春,周勇军.整体式斜交桥中桥台钢桩地震响应[J].交通运输工程学报,2022,22(05):119-130. EI Accession Number: 20230313409451 [23]陈宝春,黄福云,薛俊青,罗小烨,庄一舟,刘永健,徐明,赵秋红,BRISEGHELLA Bruno.无伸缩缝桥梁研究综述[J].交通运输工程学报,2022,22(05):1-40. EI Accession Number: 20230413422248 [24]谭志伦,赵秋红.自复位两边连接梯形波纹钢板剪力墙滞回性能分析[J].天津大学学报(自然科学与工程技术版),2022,55(12):1262-1274. EI Accession Number:20225113257753 [25]赵秋红,董硕,张建周,刘飞虎.圆端形不锈钢管混凝土桥墩抗震性能试验研究[J].湖南大学学报(自然科学版), 2022, 49(09):80-89. EI Accession Number: 20224112881709 [26]赵秋红,董硕,谢萌.钢纤维增强地聚物再生混凝土单轴受压全曲线试验[J].建筑结构学报,2022,43(11):255-265. EI Accession Number:20224212981912 [27]赵秋红,董硕,朱涵,于泳.钢纤维橡胶混凝土的循环受压应力-应变关系[J].建筑材料学报,2022,25(08):789-797. EI Accession Number: 20224012846116 [28]赵秋红,高俊秀,邱静.基于实际竖向荷载分布的波纹钢板剪力墙轴压屈曲分析[J].天津大学学报(自然科学与工程技术版),2022,55(04):391-401. EI Accession number: 20220111428863 [29]赵秋红,许梦凡,董硕.地震-波浪耦合作用下考虑相位差影响的深水桥墩动力响应分析[J].中国公路学报,2021,34(05):86-98. EI Accession number: 2021251051905 [30]赵秋红,刘凯,王菲,李一康.GFRP筋橡胶集料混凝土梁受弯性能[J].复合材料学报, 2021, 38(05): 1611-1622. EI Accession number: 20212010355807 [31]赵秋红,董硕,朱涵.钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型[J].复合材料学报, 2021, 38(07): 2359-2369. EI Accession number: 20213210743649 [32]赵秋红,董硕,朱涵.钢纤维-橡胶/混凝土抗剪性能试验[J].复合材料学报,2020,37(12):3201-3213. EI Accession number: 20205209676166 [33]赵秋红, 李晨曦, 董硕. 深水桥墩地震响应研究现状与展望[J]. 交通运输工程学报,2019,19(02):1-13. EI Accession number: 20192607093187 [34]赵秋红,邱静,郝博超,王晴薇. 两边连接竖向波纹钢板剪力墙的抗侧性能[J]. 天津大学学报(自然科学与工程技术版),2019, 52(S2): 46-53. EI Accession number: 20193907464301 [35]赵秋红,王菲,朱涵. 结构用橡胶集料混凝土受压全曲线试验及其本构模型[J]. 复合材料学报, 2018,35(08):2222-2234. EI Accession number: 20184105916272 [36]赵秋红,齐朝阳,安泽宇,陈宝春. 考虑SSI的整体式钢桥抗震性能参数分析[J].交通运输工程学报,2018,18(05):35-46. EI Accession number: 20185206305388 [37]赵秋红,邱静,李楠,李忠献.梯形波纹钢板剪力墙抗震性能试验研究[J].建筑结构学报,2018,39(S2):112-120. EI Accession number: 20191306687212 [38]赵秋红,张冀豪,陈宝春.整体式斜交桥抗震性能分析[J].地震工程与工程振动,2018,38(04):34-40. [39]赵硕,赵秋红.部分填充圆端形钢管混凝土桥墩滞回性能分析[J].建筑结构,2018,48(S2):575-580. [40]赵秋红,邱静,李楠. 波纹钢板剪力墙简化模型分析[J]. 中国科技论文在线精品论文,2018,11(8): 791-798. [41]赵秋红,王凯杰,李一康,李忠献. 改进钢板-混凝土组合剪力墙结构受力性能分析[J]. 建筑结构学报, 2017, 38(s1):98-104. EI Accession number: 20182005205945 [42]赵秋红,张建周,李忠献. 圆端形不锈钢管混凝土桥墩滞回性能有限元分析[J]. 建筑结构学报, 2017, 38(s1): 435-443. EI Accession number: 20182005205861 [43]赵秋红,郝博超,李楠. 钢板剪力墙简化分析模型研究[J]. 天津大学学报(自然科学与工程技术版),2017,50(S1):42-52. EI Accession Number: 20180204634694 [44]赵秋红,李楠,孙军浩. 波纹钢板剪力墙结构的抗侧性能分析[J]. 天津大学学报(自然科学与工程技术版),2016,S1:152-160. EI Accession Number: 20163502752711 [45]邱静,赵秋红. 加劲钢板剪力墙的研究及应用[J]. 建筑结构,2015,16:52-62. [46]孙军浩,赵秋红. 钢板剪力墙的工程应用[J]. 建筑结构,2015,16:63-70. |